Coordinate Geometry

1 The circle C has centre $(3,-2)$ and radius 5 .
a Write down an equation of C in cartesian form.
The line $y=2 x-3$ intersects C at the points A and B.
b Show that $A B=4 \sqrt{5}$.

2 The line $A B$ is a diameter of circle C.
Given that A has coordinates $(-5,6)$ and B has coordinates $(3,8)$, find
a the coordinates of the centre of C,
b a cartesian equation for C,
c an equation of the tangent to C at A.
3 The circle C has equation $x^{2}+y^{2}+8 x-16 y+62=0$.
a Find the coordinates of the centre of C and the exact radius of C.
The line l has equation $y=2 x+1$.
b Show that the minimum distance between l and C is $3(\sqrt{5}-\sqrt{2})$.

The diagram shows rectangle $P Q R S$ and circles C 1 and C 2 .
Each circle touches the other circle and three sides of the rectangle. The coordinates of the corners of the rectangle are $P(0,4), Q(1,1), R(7,3)$ and $S(6,6)$.
a Find the radius of C1
b Find the coordinates of the point where the two circles touch.
c Show that C1 has equation $2 x^{2}+2 y^{2}-8 x-12 y+21=0$.
5 The circle C touches the y-axis at the point $A(0,3)$ and passes through the point $B(2,7)$.
a Find an equation of the perpendicular bisector of $A B$.
b Find an equation for C.
c Show that the tangent to C at B has equation

$$
3 x-4 y+22=0
$$

6 The point $P(x, y)$ moves such that its distance from the point $A(-3,4)$ is twice its distance from the point $B(0,-2)$.

Show that the locus of P is a circle and find the coordinates of the centre and the exact radius of this circle.

7 The points $P(-4,9)$ and $Q(-2,-5)$ are such that $P Q$ is a diameter of circle C.
a Find the coordinates of the centre of C.
b Find an equation for C.
c Show that the point $R(2,7)$ lies on C.
d Hence, state the size of $\angle P R Q$, giving a reason for your answer.

8

The diagram shows circles and which both pass through the point P, and the common tangent to the circles at P, the line l.
Circle has the equation $x^{2}+y^{2}-4 y-16=0$.
a Find the coordinates of the centre of
Circle has the equation $x^{2}+y^{2}-2 x-8 y-60=0$.
b Find an equation of the straight line passing through the centre of and the centre of
c Find an equation of line l.
9 The circle C has equation $x^{2}+y^{2}-8 x+4 y+12=0$.
a Find the coordinates of the centre of C and the radius of C.
The point P has coordinates $(3,5)$ and the point Q lies on C.
b Find the largest and smallest values of the length $P Q$, giving your answers in the form $k \sqrt{2}$.
c Find the length of $P Q$ correct to 3 significant figures when the line $P Q$ is a tangent to C.
10

The diagram shows the circle C and the line $y=x$.
Given that circle C has centre (a, b), where a and b are positive constants, and that C touches the x-axis,
a find a cartesian equation for C in terms of a and b.
Given also that the line $y=x$ is a tangent to C,
b show that $a=(1+\sqrt{2}) b$.

